PIRLS  
 
search

ENME    PIRLS




Computer simulation of air flow around a golf ball.

Computer simulation of air flow around a golf ball.

 

Bioengineering associate professor Elias Balaras and his graduate student Nikolaos Beratlis, along with researchers at the University of Arizona, are using supercomputing power to study the aerodynamics of golf balls, specifically golf ball dimples, according to the American Institute of Physics.

Their results were reported at the 61st Meeting of the American Physical Society's Division of Fluid Dynamics last month.

The team modeled the movement of a golf ball through the air with the highest level of detail ever. This could allow for better design of golf ball dimples, which contribute to the balls' aerodynamics.

Balaras and Beratlis created software for processing equations for the project on parallel supercomputers. This allowed the researchers to perform computations much faster than would have been possible on regular computers.

The researchers' work has received wide coverage in the media, including in the New York Times, among other publications.



December 3, 2008


«Previous Story  

 

 

Current Headlines

UMD-Led Research Predicts Dangerous Blood Pressure Drops in ICU Patients

Sarah Bergbreiter wins ISR Outstanding Faculty Award

Alumnus Wins DOE Early Career Award

UMD Team in Top Six at 2nd Hyperloop Competition

New UMD Hyperloop Pod Races Against Rivals this Weekend

UMD Researchers Explore Possibility of Making a Biological Cell Membrane Positive

Yu Named ASME Fellow

Smela named Clark School Associate Dean for Faculty Affairs and Graduate Programs

Terps Racing Students Visit Indy 500 Time Trial Practice Sessions

Miao Yu named Maryland Robotics Center director

 
 
Back to top  
PIRLS Home Clark School Home UMD Home ENME Home